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We consider the relaxation of an order-parameter fluctuation of wave number k 
in a system undergoing a second-order phase transition. In general, close to the 
critical point, where k-~,~ ~-~ (the correlation length) the relaxation rate has a 
linear dependence on ~c/k of the form ?(k, x)=y(k,  0 )x  (1-ate/k).  In analogy 
with the use of Ward's identity in elementary particle physics, we show that the 
numerical coefficient a is readily calculated by means of a "mass insertion." We 
demonstrate, furthermore, that this initial linear drop is the main feature of the 
full x/k dependence of the scaling function R-X?,(k, x), where x is the dynamic 
critical exponent and R = (k2+ K2) ~/2 is the "distance" variable. 

KEY WORDS: Ward's identity; critical dynamics; scaling function; phase 
transition. 

1. I N T R O D U C T I O N  

One of the central tasks in the theory of critical dynamics is the com- 
putation of the rate v(k, x) of a relaxing mode of wave number k at a tem- 
perature for which the correlation length is ~c 1. As x is a monotonic 
function of the temperature, it serves to describe the critical temperature 
dependence. At the critical point, K = O, so that the problem simplifies to 
the determination of the function y(k, O) of the single variable k. According 
to the theory of dynamic scaling (1'2) this function is generally of the form 
k x, where x is a critical exponent. The determination of ?(k, K) in the full 
quadrant of the ~c-k plane shown in Fig. 1 is a much more complicated 
problem, requiring in general the solution of coupled integral equations. 
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Fig. 1. General features of the dependence of a critical relaxation rate on wave number, k, 
and correlation length, ~c -1. Natural variables are the "radius" R = (k2+ K2) 1/2, and the ratio, 
or "angle variable," ~c/k. The linear dependence on ~c/k for K~k (shaded region) is readily 
calculated by the Ward's identity method. 

The purpose of the present paper is to demonstrate, in spite of the intrinsic 
mathematical complexity of the problem, the following two points: 

1. In many cases the overall behavior of 7(k, •) is determined largely 
by its first departure from y(k, 0), which is linear in ~c/k for ~c~k. This 
linear region is shown by the shaded sector in Fig. 1. 

2. This first departure can be calculated in a simple way by an 
application of Ward's identity, in the form in which it is defined below. 

For  any given problem the approach that we will present here does 
not take the place of an exact numerical solution of the underlying coupled 
integral equations. But on the other hand, the possibility of a computer 
solution does not make the approach advocated here superfluous. The two 
treatments complement one another. It is often stated that one should not 
put a problem on the computer unless one already knows beforehand the 
answer--at  least, qualitatively. This is exactly the role of the Ward's iden- 
tity approach. It can serve as a first approximation for a computer iteration 
of the coupled integral equations. Furthermore, this first approximation 
may in many cases represent a solution of adequate accuracy. This is 
because of the inherent approximations in the integral equations them- 
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Fig. 2. Ward's identity method. Differentiating the convolution integral represented by (a) 
results in the "mass insertion" shown by the cross in (b). Because of the predominant con- 
tribution of the small momenta the intermediate line carrying the mass insertion can be 
replaced by the "spectator" line [dashed in (c)] carrying zero momentum. 

selves, which can cause the added accuracy of the computer  solution to be 
of questionable significance, or, possibly, even irrelevant. 

In Section 2 below we introduce the use of Ward's  identity and the so- 
called "mass insertion" in the simple context of a static correlation 
function. Section 3 deals with the more complicated situation that obtains 
in critical dynamics. Section 4 illustrates the general approach by a specific 
application to the ferromagnetic phase transition. 3 This section concludes 
with a comparison of the dynamic scaling function obtained by the Ward's  
identity method with that found by R6sibois and Piette. (4) Section 5 con- 
stitutes a brief summary. 

2. M A S S  I N S E R T I O N  

To demonstrate the main two points listed above it will suffice to con- 
sider a typical single-loop contribution to 7(k, ~), as shown by Fig. 2. The 
integration over the internal wave numbers or "momenta,"  p and p', is to 
be carried out under the conservation of momentum constraint p + p ' =  k. 
The internal lines in Fig. 2a represent the Fourier transform of the order- 
parameter  correlation function. Because of the small value of the 
anomalous dimension exponent (5) t 1 it is generally sufficiently accurate for 
critical dynamics to set it equal to zero and to use the order-parameter  
correlation function in the form of the Ornstein Zernike approximation 

1 
G(r, K) = ~ r  e-'~r (2.1) 

where r is the spatial separation of the two interaction points shown in 
Fig. 2a. The first departure from the critical point is given by the derivative 

3 For other examples of this method see Ref. 3. 
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with respect to tc of the integral represented by Fig. 2a. Carrying out the 
differentiation inside the integral involves replacing G wherever it occurs by 

OG} _ 1 (2.2) 
&c ~=o 4~z 

Equation (2.2) exhibits the central point of this paper, which is that the 
complete disappearance of r from Eq. (2.2) greatly simplifies the com- 
putation of 07(k, K)/& I~=o. The same result can be obtained from the 
Fourier transform of G, 

1 
g(p, ~c) =p2 + ~c2 (2.3) 

and its derivative 

0__gg= _2Kg 2 (2.4) 
& 

This is equivalent to the famous "Ward's identity" of quantum 
electrodynamics, (6) being an equality between a vertex (right-hand side) 
and a "mass" derivative (left-hand side). Equation (2.4) is illustrated by the 
cross in Fig. 2b, indicating a "mass insertion." The order-parameter 
correlation function is thereby converted into a zero-momentum vertex 
function, as we now explain. Because-of the strong p dependence of 
Eq. (2.4) the p integration is concentrated in the immediate vicinity of the 
origin. The remaining factors of the integrand can therefore be evaluated at 
p = 0 and taken outside of the integral, leaving 

1 - K i o pZdp 
&c 8r~3 f d3pg(P' ~C)=--~ - Jo (p2+tr 

(2.5) 
tc ~ 1 
r~ 2 4~ 4rt 

This alternative derivation of Eq. (2.2) can be interpreted as the 
replacement of g(p, tc) by the dashed "spectator" line in Fig. 2c. A spec- 
tator line carries no momentum and has the strength - 1/4re. Thus every n- 
loop integral is reduced by the ~ differentation to a sum of ( n -  1)-loop 
integrals. The fact that the integrands of these (n -1 ) - loop  integrals are 
functions only of k is a further convenience in their evaluation. 

For illustrating the method described above it suffices to consider the 
single-loop polarization integral 4 

C(k, K) = f d3re-ikrGi(r, K) (2.6) 

4 This integral plays a central role in the screening theory, or n- t expansion. See, e.g,, Ref. 7. 
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Although this is not a dynamic quantity, it does offer a prototype for the 
application of Ward's identity. Substituting Eq. (2.1) and integrating over 
angle reduces Eq. (2.6) to 

1 i ~ dr sinkre -2~r 
C(k, ~c)=~-k J o  7 (2.7) 

The appearance of 2~c in the integrand of this integral has led to the 
statement of the general "rule-of-thumb" concerning the equivalence (8) 
between k and 2~c. Explicit evaluation of Eq. (2.7) yields 

1 k 
C(k, to)=4--~ tan-~ 2-~ (2.8) 

with the limiting values 

1 
C(k, 0)=~- ,  (2.9) 

b K  

and 
1 

c(0, ~c)= (2.10) 
8gK 

For exhibiting explicitly the behavior of C(k, ~c) in the region ~c ~ k  (shaded 
region of Fig. 1) we rewrite Eq. (2.8) as 

1 1 2K 
C(k, ~c) = 8k 47~k tan -~ 1 --k 

1 1 
- 8k 2n k 2 

(2.11) 

where 
4 

a = -  (2.12) 
7C 

As a demonstration of Ward's identity method we now derive 
Eqs. (2.11) and (2.12) without the benefit of the full • dependence, which is 
in general not available. In momentum space, Eq. (2.6) becomes the con- 
volution integral 

1 
C(k, ~c)=-~5~3 f d3pg(P, to) g(p', K) (2.13) 
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with the conservation of momentum constraint 

p + p ' = k  (2.14) 

as mentioned above. Differentiating with respect to K, substituting 
Eq. (2.5), and carrying out the integration in the vivinity of p = 0  and 
p' = 0 yields 

~c) - 1  - 1  c3C(k, = 2---~- g(k, 0) = (2.15) 
~ ~ = o 27zk2 

the factor of 2 coming from the fact that either of the two lines of the 
"bubble" graph of Fig. 1 can become the spectator line. The desired linear 
coefficient then follows from the definition 

- k  aC(k,K) ~=o=4 (2.16) 
a = C(k,  0~) a• 

in agreement with Eq. (2.12). 
Because C(k, K) is a homogeneous function of its two variables it is 

convenient to reexpress it in terms of the ratio tc/k and the "distance" in the 
K-k plane, 

R(k, ~) =- (k 2 + K2)1/2 (2.17) 

These are effectively the angle and radial variables, respectively, of a cir- 
cular polar coordinate system. Along the two limiting Cartesian axes we 
have 

1 
C(k, 0)--- 8~ (2.18) 

and 

1 
C(0, ~:) = 8rtR (2.19) 

A scaling function depending only on the "angle" variable K/k can therefore 
be defined as 

S ( k ) = - S R ( k ,  K)C(k, K) (2.20) 

This function describes the variation of C(k, ~c) along the arc of the circle 
shown in Fig. 1 at R = const. The limiting values at the two ends of the arc, 
according to Eqs. (2.18) and (2.19), are 

S(0) = 1 (2.21) 
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and 

1 
S(oe) = -  (2.22) 

7T 

Substitution of Eqs. (2.8) and (2.17) into Eq. (2.20) gives 

S = -  1 + t an -  ~ - -  (2.23) 
2~c 

which is plotted vs. •/k as the dot-dash curve in Fig. 3. The dashed 
slanting straight line shows the approximation 

with a = 4/~ from Eq. (2.12). Although Eq. (2.24) is valid only for ~c/k< 1, 
it is evident in Fig. 3 that this linear approximation accounts qualitatively 
for a major portion of the drop in the scaling function upon going away 
from the critical point. In order to demonstrate the full usefulness of the 
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Fig. 3. Scaling function for single-loop polarization graph of Fig. 2a vs. s/k ,  the reciprocal of 
the product of wave number times correlation length. The solid curve shows S, the two- 
parameter approximant, with the parameters fixed by Ward's identity (initial slope shown by 
slanting dashed line) and by the "rule-of-thumb" value for the s/k--* oo limit. The exact 
~c/k-~ oo limit is indicated by the horizontal dashed line. The close agreement between the 
dot-dash curve (S, the exact scaling function) and the solid curve (~, the approximant) 
demonstrates the usefulness of a two-parameter approximant in cases where an exact 
expression is not available. 
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Ward's identity method we present in Appendix A a simple method for 
obtaining an approximate scaling function S(x/k), as illustrated by the 
solid curve in Fig. 3. 

3. CRIT ICAL D Y N A M I C S  

In this section we discuss, in a somewhat formal and abstract fashion, 
a complication that enters when we apply Ward's identity approach to a 
particular problem in critical dynamics. In Section 4 we study the same 
point in more concrete form in the specific case of the ferromagnet. In 
general we have to deal with n different relaxation rates 7i(k, ~c), for 
i =  1, 2 ..... n. Our task, in analogy with Eq. (2.16), is to determine the 
numerical values of the n different linear coefficients 

k 0 
7i(k, ~c) ~=0 (3.1) 

a i = ~ i( k ,  O) c3lr 

But these coefficients are not given directly by the mass insertions discussed 
in the preceding section. The mass insertions affect only the "static," or 
equal-time order-parameter correlation functions g(p, to), and thereby 
produce the coefficients 

k 0 
b i 7 i (k ,  K) static = [~=o (3.2) 

7~(k, 0) OK 

The superscript denotes that, in the integrals specifying 7i(k, ~c), only the 
direct changes produced by the ~c dependence of the static correlation 
function factors in the integrands are to be included in be. Thus the bi are 
the true expression of the mass insertion effect studied in the preceding sec- 
tion. The ai, on the other hand, require additional contributions because of 
the coupling of the ith mode with the other relaxing modes of the system, 
which we denote by j = l , 2  ..... n. The rates 7j(k,x) occur in the 
denominators of the integrals that specify 7~(k, ~c). Therefore the linear 
variation of the 7j(k, x), for ~c~k, produces an additional linear variation 
in 7i(k, ~c), which can be written in the form 

Aai= - L Koai (3.3) 
j = l  

where the K o are certain well-defined convolution integrals to be evaluated 
for x = 0. The full linear coefficient is consequently ai = b~-  Aa~, which it is 
convenient to write in matrix form as 

a = b -  Ka (3.4) 
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whose matrix solution is 

a=(I+ K) -I b 

where I is the identity matrix. 

(3.5) 

4. F E R R O M A G N E T  

As a concrete example of the general method discussed in the previous 
section we sketch here the determination of the dynamic scaling function 
for the isotropic Heisenberg ferromagnet in the vicinity of its Curie point. 
Our interest is to illustrate the procedure, instead of producing exact 
numerical results. Therefore, in simplifying the exposition, we do not 
hesitate to make rough approximations, provided that these do not change 
the picture in any essential way. The precise numerical details can be found 
in Ref. 3. From the decoupled-mode theory, ~8'9) the relaxation rate for a 
fluctuation of wave number, or "momentum," k, is, measured in a certain 
convenient unit, 

7(k, x) =g '(k, to) ~ d3p(p2- p'2) 2 g(p, x) g(p', ~c) (4.1) 
8re 3 J 7(k, to) + ~(p, ~c) + 7(P', ~c) 

T]he convolution integral of Eq. (4.1) illustrates the theme of this 
paper, which is that the critical temperature dependence for x ~ k  has its 
origin entirely in the divergence of the static, or equal-time correlation 
function g(p,~c)[p_oock-2+n~k -2. This p = 0  divergence influences a 
region ofp space of radius of O(k), so that its total effect is proportional to 
k3k-Z=k. The validity of this result depends upon neglecting the 
anomalous dimension exponent t/, which involves an acceptable error of 
the order (5) of 4%. More serious is the approximation of g(p, x) by the 
Ornstein-Zernike formula of Eq. (2.3), which neglects the Fisher-Langer 
tail. The latter changes the ~c dependence of g(p, ~) for p values which 
exceed K by an order of magnitude. [For p = O(~:) Eq. (2.3) remains a 
good approximation.] The sum rule (5) requires that ~?/0x ~ d3pg(p, K) have 
a x dependence of the form of a sum of terms xY, where y equals 1Iv- 1 
and (1 - c O / v -  1. This rigorous result, standing in contradiction to the con- 
stant value given in Eq. (2.5), indicates a definite breakdown of our com- 
putational method in the region 0<~c~0.1k. The method, however, 
recovers its validity for larger values of x. This is because the convolution 
integral of Eq. (4.1) imposes a natural upper cutoff on the p integration at 
p = O(k). Thus, for 0.1k < tr < k, the effect of the Fisher-Langer tail is sup- 
pressed and the linear ~: dependence predicted by Ward's identity approach 
is a satisfactory approximation. 

822/41/5-6-12 
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The convolution integration in Eq. (4.1 ) is carried out under the "con- 
servation of momentum" constraint, Eq. (2.14). The term 7(k, K) in the 
denorminator results from the frequency dependence of the relaxation rate 5 
and is required for self-consistency. Except for this detail, Eq. (4.1) is iden- 
tical to the integral equation employed by R6sibois and Piette (4) for their 
numerical solution by iteration. Substituting Eq. (2.3), setting ~c=0 
throughout, and abbreviating ?:(k, 0) by 7~, etc., reduces Eq. (4.1) at the 
Curie point to 

(4.2) 

This integral equation supports the self-consistent solution 

7/, = c k x  (4.3) 

where the critical exponent is, by inspection, 

5 
x = - (4.4) 

2 

Substituting Eqs. (4.3) and (4.4) into Eq. (4.2) and scaling the momenta to 
k = t determines the coefficient in Eq. (4.3) by the integral 

(4.5) ~ 3  j l + pS/2 + p,S/2 ~ p,  p j 

With these preliminaries behind us we can now move away from the 
Curie point. The mass insertions in the two lines of the self-energy graph of 
Fig. la result in two spectator graphs of the type of Fig. lc and, according 
to Eq. (3.2), yield 

b = k O~:(k, K) ~c=0static _ 1 k 5 = 1 (4.6) 
7/` ~c 4rc7 2 4~c 2 

As explained in Section 3 above, to obtain the true linear coefficient of 
7(k, ~), the mass insertions are not enough; we must also take into account 
the ~c dependence of the rates in the denominator of Eq. (4.1). We split this 
contribution, which is denoted by K in Eq. (3.4), into two parts. The part 
ensuing from the variation of y(k, ~c) is the integral 

(4.7) 
-- 8rc3 c2 . ( l + p 5/2 ~p'  p J 

s For a study of the deviation from true exponential relaxation at the Curie point see Ref. 10. 
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where the last line results from substituting Eq. (4.3) and scaling the 
momenta to k =  1. Substituting c 2 from Eq. (4.5) permits us to rewrite 
Eq. (4.7) as 

1 + p5/2 + p,5/2 (4.8) 

where the angular brackets denote an average to be computed using the 
integrand of Eq. (4.5) as the weighting function. It evidently follows that 
0 < K ' <  1. The remaining part of K ensues from the variations of 7(P, ~c) 
and 7(P', ~c) in the denominator of Eq. (4.1), and is given by the average 

K,, = / p3/2 q_ p, 3/2 \ 
(4.9) + pS/2 + p,5/2/ 

Substitution of Eqs. (4.6), (4.8), and (4.9) into Eq. (3.5) gives the desired 
linear coefficient as 

a - (4.I0) 
1 + K ' + K "  

We Emphasize that the required three integrations are to be carried out 
strictly at the Curie point, for x = 0. 

The numerical result ~3) for Eq. (4.10) does not differ greatly from the 
value a=4 /Tr=  1.27 of Eq. (2.12). Therefore, for the present qualitative 
purpose of illustrating the application of Ward's identity method to the 
ferromagnet, we use this value as being close enough. Furthermore, we 
forego the self-consistent determination ~3) of the y ~ oo limit of the scaling 
function, as this would take us too far afield. Instead, we use the rule of 
thumb as a rough indication of what the self-consistent treatment would 
give. Consequently, we can regard the approximant ~(y) of Eqs. (A2) and 
(A3) and Fig. 3 (solid curve) as describing also the ferromagnet. Compared 
with the exact numerical computation, 6 the asymptotic value of 
S(oo)=0.36 is approximately 16% too low. Although we could remove 
this error by adjusting the parameters of the approximant, this is not 
required by our present limited goal of providing a qualitative illustration 
of the method. 

In comparing theory with the experimental data, Als-Nielsen 1~ has 
drawn attention to the essential role played by the sharp decrease of 
S(y) in the region 0 < y < 0.5. This effect is precisely what we have been 
discussing here and its idealized behavior is illustrated by the slanting 

6 The work of Ref. 3 yields S ( ~ )  =0.43. 
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dashed line in Fig. 3. This linear drop dominates the actual behavior of 
~(y) over almost the entire low-y range, 0 <  y<0.5.  Because the spin 
relaxation process in the isotropic ferromagnet is a diffusion of a conserved 
order parameter, its dynamics is best described in terms of the nonlocal dif- 
fusion coefficient 

D(k, ~c)=k 2y(k, x) (4.11) 

At the critical point, the substitution of Eqs. (4.3) and (4.4) gives 

D(k, 0)ock  x - 2  = k 1/2 (4.12) 

At an arbitrary point in the x-k plane the factor of k m has to be 
generalized to R 1/2, where R is the "distance" defined in Eq. (2.17). Thus 

D(k, x)ocRmS(y) (4.13) 

with the scaling function S(y) depending only on the angle in the x-k  
plane and being represented by an approximant S(y) such as that plotted 
in Fig. 3. In our view this is the most useful and convenient way of 
representing D(k, x), because of the simple monotonic drop of S(y) toward 
its y ~ oo limit of ,~(oo). It is, however, customary to define a different 
dynamic scaling function by 

/3(Y) = D(k, O) S(y) 

= (1 + y2)1/4 S(y) (4.14) 

/3(y) is plotted vs. y in Fig. 4, by approximating S(y) by S(y) of Eqs. (A2) 
and (A3) and the solid curve in Fig. 3. The 0 < y ~ l  and y > l  limiting 
forms are shown in Fig. 4 by the dashed line and dashed curve, respec- 
tively. The factor (R /k )mS(~)  is plotted as the dotted curve in Fig. 4. 

The competition between the monotonic decrease in S(y) and the 
monotonic increase in (R/y) m produces a minimum in/3(y) at y = 1.1, at 
which point/3 -- 0.51./3(y) regains the/3(0) = 1 value at y = 7.3. Adjusting 
the approximant for the correct S(oo) limit (see footnote 6) (i.e., raising the 
underlying dashed straight line in Fig. 3 and the underlying dashed curve 
in Fig. 4) will bring the/3(y) = 1 crossing down to y = 5.3 and will bring 
up the minimum value into good agreement with the value 0.57 reported 
by R6sibois and Riette34) These authors described the minimum as a "non- 
trivial" result. From the present point of view it will be clear that the 
minimum is a direct and immediate consequence of the linear drop in 
D(k, to) in the neighborhood of ~c -- 0. This linear drop follows very simply, 
in turn, from the application of Ward's identity, as described in this paper. 
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Fig. 4. Conventional ferromagnet scaling function,/) [see Eq. (4.14)] vs. K/k, the reciprocial 
of the product of wave number times correlation length. The solid curve is a schematic 
representation obtained by multiplying S of Fig. 3 by the "radial" factor 
(R/k) 1/2 = (1 + ~c2/k2) 1/4 (shown by the dotted curve). The competition between the rise in this 
factor and the initial linear drop from Ward's identity (slanting dashed line) produces the 
minimum at ~c/k~_l.1. Because of its monotonicity, the scaling function S as defined in 
Eq. (4.13) and as illustrated in Fig. 3 is preferred over the conventional definition /~, as 
illustrated here by the solid curve. The dot~dash curve shows the ~ > k  hydrodynamic 
behavior of/~ and, in a more exact calculation, lies somewhat higher. 

5. S U M M A R Y  

Taking the simple polarization function C(k, ~c) as a prototype, we 
separated its dependence on its two variables by factoring off R 1, where R 
is the "distance" in the ~c plane of Fig. 1. What remains is the scaling 
function S(y), where y =  ~c/k is the "angle" variable. The detailed and 
special structure of C(k, tc) is contained in S(y). This definition of the 
scaling function eliminates the gross changes in C(k, ~c) that come from R 
and leaves S(y) to vary (monotonically) between the two limits S(0) and 
S(oe), as shown in Fig. 3. These limiting values differ merely by a 
numerical factor of order 1. We then saw that this definition of S(y) brings 
with it the substantial advantage that most of the variation of S(y) 
between its two limits is associated with the linear drop, that takes place in 
the region 0 < y < 0.5. This linear drop, shown by the slanting dashed line 
in Fig. 3, is the salient feature of S(y) and is the central theme of this 
paper. For larger values of y, S(y) approaches its limiting value, S(~) ,  
very slowly (as y-Z). This subsequent variation takes us outside the region 
of applicability of Ward's identity approach, but it is easily and effectively 
handled by means of a Pad6-type approximant. Thus it is possible in any 
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given case to give a good representation of S(y) by means of a two- 
parameter approximant, g(y). 

The representation in Appendix A of the scaling function for C(k, ~c) 
by its two-parameter approximant sets the stage for the corresponding 
treatment of a dynamic scaling function. In Section 3 we dealt with the 
"feedback effect' of the relaxation rates on their 0 < y ~ 1 behavior. This 
effect does not constitute any essential complication of Ward's identity 
method and is, in general, taken into account by the inversion of an 
appropriate matrix. As a concrete illustration of the method, we sketched 
the theory of the dynamic scaling function for the isotropic Heisenberg 
ferromagnet in Section 4. As expected, and as illustrated by the slanting 
dashed line in Fig. 4, the initial linear drop in/5(y) dominates its behavior 
in the region 0 < y < 0.5. The increase in/~(y) for y~> 1 is a consequence of 
the way/~(y) has been defined by R6sibois and Piette. (4) The fact that the 
minimum in/5(y) at y -~ 1 has this simple and natural origin demonstrates 
the usefulness of Ward's identity method that we have presented in this 
paper. 
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APPENDIX A: APPROXIMATE SCALING FUNCTION 

In order to demonstrate the full usefulness of Ward's identity method 
we discuss here a simple method for obtaining an approximation ~(y) to 
the true scaling function S(y), as a function of y = ~c/k, for the general case 
where a closed expression for S(y), such as Eq. (2.23), is not available. 
From the underlying integral equations we deduce the following general 
conditions: 

(a) Linear dependence on y for 0 < y ~ 1 as expressed by Eq. (2.24). 
(b) Monotonic decrease of S(y) between the two limits S(0) and 

~(oe). (This may be difficult to establish rigorously, in which case it may 
be adopted as a reasonable working hypothesis.) 

(c) Asymptotic approach to the y ~ oe limit as 

~ ( y ) - S ( ~ ) o z y  2 (A1) 

This property is exhibitly explicitly by the integral in Eq. (2.7) and follows 
from the general requirement that the k dependence of such integrals can 
only be in terms of k 2, in the range k ~ K. In order to find an approximant 
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that satisfies the above three general conditions we extend Eq. (2.24) by 
replacing the linear factor y = x / k  by some function f (m~c /k )=f (my)  
where, by the rule of thumb, we expect m ~- 2. f ( m y )  should have an initial 
linear rise and then saturate at some finite limiting value, f ( ~ ) ,  as y ~ ~ .  
If we normalize the initial slope as f ' (0 )  = 1 we can write the approximant 
a s  

S(y)  = 1 - a f ( m y )  (a2) 
m 

An especially simple form possessing the right properties is 

Z 

f ( z )  = (1 + z2) m (A3) 

In addition to f ' ( 0 ) =  1, Eq. (A3) gives the desired saturation at f ( ~ ) =  1 
and the approach to this limiting value for z >> 1 as 

1 2 
f ( z )  ~- 1 - ~  z -  (A4) 

Thus, all three of the above general requirements, (a), (b), and (c), are 
satisfied. In general, it is possible to compute an approximate value for 
S(~) ,  which, with 

S ( ~ ) =  1 a (A5) 
m 

and the already-determined value of a fixes m. But we do not want to go 
into this matter in such detail here. For demonstrating the general idea, it 
suffices to set m = 2 ,  its rule-of-thumb value, so that Eq. (A5) gives 
S ( ~ )  = 1 - 2 / ~ =  0.363. This is somewhat larger than the correct value of 
S ( ~ ) =  n - t =  0.318, which is illustrated in Fig. 3 by the horizontal dashed 
line. The approximant of Eqs. (A2) and (A3) for m = 2  is plotted vs. 
y = ~c/k as the solid curve in Fig. 3. This approximant serves our present 
purpose, which is to show how the linear part of S(y), which is the main 
point of our paper, can be easily supplemented by a Pad6-type treatment 
so as to obtain a reasonably good representation of S(y)  for the entire 
range 0 ~< y ~< ~ .  Although we do not exhibit it here, it is clear that an even 
better fit can be obtained by adjusting the second parameter of the 
approximant. Taking m = 4 / ( n - 1 ) =  1.87 would, according to Eq. (A5) 
make S(y)  exact in the y --* ~ limit as well as in the small-y region. 
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